Схемы питания светодиодных ламп

Схемы питания светодиодов Введение Использование светодиодов для освещения индикации — это надежное и экономичное решение. Светодиоды имеют очень высокий КПД, надежны, экономичны, безопасны, долговечны в сравнении с лампами накаливания и люминесцентными лампами. В данной статье рассматриваются способы включения светодиодов. Описываются способы питания светодиода от компьютера. Что такое светодиод и как он работает Светодиод — это, во-первых, диод. И точно так же как у обычного диода, у светодиода есть два вывода контакта питания : анод плюс и катод минус. Это связано с тем, что светодиод является полупроводником, то есть, проводит электрический ток только в одну сторону от анода к катодуи не проводит в обратную от катода к аноду. Итак, для того, чтобы светодиод засветился, надо пропускать через него электрический ток в направлении от анода к катоду. Для этого следует подать на его анод положительное, а на катод — отрицательное напряжение. Тут и начинается самое неприятное. Оказывается, что светодиод нельзя подключать к источнику питания напрямую, поскольку это приводит к немедленному сгоранию светодиода. Причина сего поведения кроется в следующем. Выражаясь простым бытовым языком, светодиод является очень жадной и неразумной личностью: получив неограниченное питание он начинает потреблять такую мощность, которую физически не способен выдержать. Как мы все уже догадались, для нормальной работы светодиоду нужен строгий ограничитель. Именно с этой целью последовательно со светодиодом устанавливают резистор, который служит надежным ограничителем тока и мощности. Этот резистор называют ограничительным. Какие бывают светодиоды Во-первых, светодиоды можно разделить по цветам: красный, желтый, зеленый, голубой, фиолетовый, белый. Большинство современных светодиодов выполнено из бесцветного прозрачного пластика, поэтому невозможно определить цвет светодиода не включив. Во-вторых, светодиоды можно разделить по потребления. Широко распространены модели с током потребления 10 миллиампер мА и 20 мА. Следует помнить, что светодиод не в состоянии контролировать потребляемый ток. Именно поэтому мы вынуждены использовать ограничительные резисторы. В-третьих, светодиоды можно разделить по такому параметру, как в открытом состоянии при номинальном токе. Несмотря на то, что про этот параметр нередко забывают — его влияние весьма и весьма значительно. Благодаря этому параметру иногда можно избавиться. Подключаем светодиод к компьютеру Светодиод ы можно подключить к компьютеру разными способами. Для подключения светодиодов в качестве простого освещения удобно использовать разъемы блока питания, выдающие 5 и 12 вольт. Для подключения светодиодов в качестве светомузыки удобно использовать LPT порт компьютера. Подключение светодиодов к блоку питания Блок питания компьютера — это замечательный источник питания для светодиода или линейки из светодиодов, поскольку он вырабатывает стабилизированное напряжение +5 вольт В и +12 Итак, разъем имеет четыре контакта, к которым подходят четыре же провода: два из них черные — это «ноль», один красный выдает напряжение +5 вольт, и один желтый выдает +12 вольт. Рассмотрим схему подключения одного светодиода. При питании от 5 В последовательно со светодиодом необходимо включить ограничительный резистор номиналом от 100 до 200 Ом. При питании от 12 В последовательно со светодиодом требуется включить ограничительный резистор номиналом от 400 до 900 Ом. Рассмотрим схему подключения двух светодиодов. При питании двух светодиодов от 5 вольт, в схему надо включить резистор до 100 Ом. Некоторые светодиоды в такой схеме будут светиться слишком тускло даже без резистора. При питании двух светодиодов от 12 В, в схему надо включить резистор от 250 до 600 Ом. Рассмотрим схему подключения трех и четырех светодиодов. При питании трех светодиодов от 12 В, следует использовать резистор номиналом от 100 до 250 Ом. Некоторые светодиоды в такой схеме включения будут светиться слишком тускло даже без резистора. Универсальный принцип расчета ограничительного резистора описан в статье «». Выше приведены схемы последовательного включения светодиодов. Существуют также способы параллельного включения светодиодов. Обратите внимание, что под параллельным включением подразумевается схема в которой, когда аноды и катоды всех светодиодов непосредственно сходятся в две точки два пучка. Такие схемы, как правило, не экономичны и небезопасны, как для блока питания, так и для светодиодов. Кроме того, схемы параллельного включения более сложны в расчетах, требовательны к источнику питания, поэтому мы будем пользоваться ими только в особых случаях. Просто посмотрим как выглядит такая схема. При паралельном включении светодиодов следует использовать только одинаковые светодиоды, с минимальным разбросом характеристик. Сопротивление ограничительного резистора должно быть рассчитано и подобрано с высокой степенью точности. В случае выхода из строя одного из светодиодов — остальные могут выгореть по очереди друг за другом в считанные минуты. Рекомендую никогда не использовать эту схему включения светодиодов. Но если все же условия требуют параллельного включения то советую использовать следующий вариант. Такая схема параллельного включения светодиодов практически избавлена от опасности последовательного выгорания светодиодов. В данном случае вместо ограничиельного резистора включено несколько обычных выпрямительных диодов разных марок НЕ светодиодов. Благодаря падению напряжения на этих диодах, до светодиодов доходит напряжение уже не 5 Вольт, а значительно меньше. Ограничительные диоды подбираются так, чтобы до светодиодов доходило напряжение равное их в открытом состоянии. Эта схема используется используется автором для круглосуточного светодиодного освещения квартиры. Подключение светодиодов к LPT порту При питании светодиода от LPT порта необходимо последовательно со светодиодом можно включить резистор номиналом до 100 Ом. В большинстве случаев, при питании светодиода от LPT порта резистор бывает не нужен. LPT порт предварительно должен быть переведен. Подробное описание способа подключения светодиодов к LPT порту содержится в статье «». Универсальный принцип расчета ограничительного резистора описан в статье «».